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Chapter 1: Introduction and Preliminaries

Let X be a non-empty set and T be a self map on X . A point
x0 ∈ X is called a fixed point of T if Tx0 = x0; that is, a point which
remains invariant under the transformation T is called a fixed point
of T .

For example, let T : [0, 1]→ [0, 1] be defined by Tx =
x

10
, Then

T (0) = 0 and hence 0 is a fixed point of T

Fixed point theorems deal with sufficient conditions on X and T
which ensure the existence of fixed points. Fixed point theorems
are extensively studied for various reasons.

Fixed point theorems serve as a powerful tool for taking these type
of problems. It has also found diverse applications in areas like
game theory, approximation theory, mathematical economics,
Theory of differential equations etc.
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Chapter 2

Common fixed point theorems for multi-valued and
single-valued maps in complete metric space
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Chapter 2: Common fixed point theorems for multi-valued and single-valued maps in complete metric space

Let (X , d) be a metric space. Denote by CB(X ) the collection of
non-empty closed bounded subsets of X . For A,B ∈ CB(X ) and
x ∈ X , define

D(x ,A) = inf
a∈A

d(x , a)

and

H(A,B) = max

{
sup
a∈A

D(a,B), sup
b∈B

D(b,A)

}
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It is seen that H is a metric on CB(X). H is called the Hausdroff
metric induced by d. It is well known that (CB(X ),H) is a complete
metric space, whenever (X , d) is a complete metric space.

Definition

(see [1]) Let T : X → CB(X ) be a multi-valued map. An element x ∈ X
is said to be fixed point of T if x ∈ Tx .
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Definition

(see [1]) Maps f : X → X and T : X → CB(X ) are weakly compatible if
they commute at their coincidence points, that is, if fTx = Tfx whenever
fx ∈ Tx .

Definition

(see [1]) An element x ∈ X is a common fixed point of T ,S : X → CB(X )
and f : X → X if x = fx ∈ Tx ∩ Sx .

Definition

(see [2]) Definition 4: Let Φ : [0,∞)5 → [0,∞) be continuous (or upper
semi-continuous)and increasing in each coordinate variable and
Φ(t, t, t, at, bt) ≤ t for every t ∈ [0,∞),where a + b = 2, a, b ∈ {0, 1, 2}
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Theorem

Let (X , d) be a complete metric space and let S ,T : X → CB(X ) be a
pair of multivalued maps and f , g : X → X be a pair of single valued
maps. Assume that there exists r ∈ [0, 1) such that for every x , y ∈ X ,

φ(r)min{D(fx ,Sx),D(gy ,Ty)} ≤ d(fx , gy)

where

φ(r) =

{
1, 0 ≤ r < 1

2 ,

(1− r), 1
2 ≤ r < 1

implies

H(Sx ,Ty) ≤ rΦ{d(fx , gy),D(fx ,Sx),D(gy ,Ty),D(fx ,Ty),D(gy , Sx)}
(1)

Suppose also that

(1) SX ⊆ gX , TX ⊆ fX

(2) f (X ) and g(X ) are closed.
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Theorem

Then, there exists a point u and w in X , such that fu = gw, fu ∈ Su,
gw ∈ Tw.(Here Φ is as specified in definition 4 )
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Theorem

Then, there exists a point u in X , such that fu = gu, fu ∈ Su, gu ∈ Tu.
(Here Φ is as specified in definition 4)
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Chapter 3

Fixed point theorems on G-metric spaces and partial metric
spaces
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Chapter 3: Fixed point theorems on G-metric spaces and partial metric spaces

This Chapter focuses fixed point theorems in G-metric spaces and
fixed point theorems in G-metric spaces by using the property P.
Also this Chapter discusses fixed point theorems for generalized
contractions on partial metric space.
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Definition

(see [1]) Let X be a nonempty set, and let G : X × X × X → R+ be a
function satisfying the following axioms:

(G1) G (x , y , z) = 0 if x = y = z ,

(G2) 0 < G (x , x , y) for all x , y ∈ X with x 6= y ,

(G3) G (x , x , y) ≤ G (x , y , z), for all x , y , z ∈ X , with z 6= y ,

(G4) G (x , y , z) = G (x , z , y) = G (y , z , x) = · · · (symmetry in all three
variables),

(G5) G (x , y , z) ≤ G (x , a, a) + G (a, y , z), for all x , y , z , a ∈ X (rectangle
inequality).

Then the function G is called a generalized metric, or, more specifically, a
G -metric on X , and the pair (X ,G ) is called a G -metric space.
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Definition

A partial metric on a nonempty set X is a function p : X × X → R+ such
that for all x , y , z ∈ X :

(p1) x = y ⇐⇒ p(x , x) = p(x , y) = p(y , y),

(p2) p(x , x) ≤ p(x , y),

(p3) p(x , y)= p(y , x),

(p4) p(x , y) ≤ p(x , z) + p(z , y)− p(z , z)

A partial metric space is a pair (X , p) such that X is a nonempty set and
p is a partial metric on X .
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Theorem

Theorem 14: Let (X ,G ) be a complete G -metric space, and let T be a
self-map of X satisfying, for all x , y , z ∈ X ,

G (Tx ,Ty ,Tz) ≤ k max
{

G (x , y , z),G (x ,Tx ,Tx),G (y ,Ty ,Ty),G (z ,Tz ,Tz),

G (x ,Ty ,Ty) + G (z ,Tx ,Tx)

2
,

G (x ,Ty ,Ty) + G (y ,Tx ,Tx)

2
,

G (x ,Tz ,Tz) + G (z ,Tx ,Tx)

2

}
(4)

where k is a constant satisfying 0 ≤ k < 1. Then T has a unique fixed
point (say p) and T is G -continuous at p.

() Common Fixed Point Theorems for Single-valued and Multi-valued Maps · · ·24th ,January 2017 18 / 49



Theorem

Theorem 15: Let (X,G) be a complete G -metric space, and let T be a
self-map of X satisfying, for all x , y , z ∈ X ,

G (Tx ,Ty ,Tz) ≤ k max
{

G (x , y , z),G (x ,Tx ,Tx),G (y ,Ty ,Ty),

G (x ,Ty ,Ty),G (z ,Tz ,Tz),

G (x ,Ty ,Ty) + G (z ,Tx ,Tx)

α
,

G (x ,Ty ,Ty) + G (y ,Tx ,Tx)

β
,

G (x ,Tz ,Tz) + G (z ,Tx ,Tx)

γ

}
, (5)

where k is a constant satisfying 0 ≤ k < 1 and
S = {(α, β, γ | α, β, γ ∈ (0, 1]}, δ ∈ S. Then T has a unique fixed point
(say p) and T is G -continuous at p.
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Theorem

Theorem 16: Let (X ,G ) be a complete G -metric space, and let T be a
self-map of X satisfying, for all x , y , z ∈ X ,

G (Tx ,Ty ,Tz) ≤ k max
{

G (x , y , z),G (x ,Tx ,Tx),G (y ,Ty ,Ty),G (z ,Tz ,Tz),

α[G (x ,Ty ,Ty) + G (z ,Tx ,Tx)],

α[G (x ,Ty ,Ty) + G (y ,Tx ,Tx)],

α[G (x ,Tz ,Tz) + G (z ,Tx ,Tx)]
}
, (6)

where k is a constant satisfying 0 ≤ k < 1 and α ∈ (0, 1]. Then T has a
unique fixed point (say p) and T is G -continuous at p.
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Theorem

Theorem 17: Let (X,G) be a complete G -metric space, and let T be a
self-map of X satisfying, for all x , y , z ∈ X ,

G (Tx ,Ty ,Tz) ≤ k max
{

G (x , y , z), α[G (x ,Tx ,Tx) + G (y ,Ty ,Ty)],

α[G (x ,Ty ,Ty) + G (y ,Tx ,Tx)]
}
, (7)

or

G (Tx ,Ty ,Tz) ≤ k max
{

G (x , y , z), α[G (x , x ,Tx) + G (y , y ,Ty)],

α[G (x , x ,Ty) + G (y , y ,Tx)]
}
, (8)

where k is a constant satisfying 0 ≤ k < 1 and α ∈ (0, 1]. Then T has a
unique fixed point (call it p) and T is G -continuous at p.
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Let T be a self-map of a complete metric space (X,d) with a
nonempty fixed point set F(T). Then T is said to satisfy property P
if F (T ) = F (T n) for each n ∈ N.

Theorem

Under the conditions of theorem 16, T has property P.

Theorem

Under the conditions of theorem 17, T has property P.
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Theorem

Suppose A,B,S and T are self maps of a complete partial metric space
(X , p) such that BX ⊆ SX , AX ⊆ TX and

p(Bx ,Ay) ≤ φ(M(x , y)) (9)

for all x , y ∈ X , where φ ∈ Φ and

M(x , y) = max

{
p(Sy ,Tx), p(Ay , Sy), p(Bx ,Tx),

1

2
[p(Sy ,Bx) + p(Ay ,Tx)]

}
(10)

If one of the ranges AX ,BX , SX and TX is a closed subset of (X , p), then

(p1) B and T have a coincidence point,

(p2) A and S have a coincidence point.

Moreover, if the pairs {B,T}and{A,S} are weakly compatible, then
A,B,S and T have a unique common fixed point.
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Chapter 4

Some common fixed point theorems for (ψ, ϕ)-weak
contractive

conditions on symmetric spaces for non-self mappings
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Chapter 4

This chapter deals with common fixed point theorems for non-self
mappings (ψ,ϕ)-weak contractive conditions of integral type in
symmetric spaces which is given by Kutbi.et.al[4]. A symmetric on
a set X is a function d : X × X → [0,∞) satisfying the following
conditions:
(1)d(x , y) = 0 if and only if x = y for x , y ∈ X ,
(2)d(x , y) = d(y , x) for all x , y ∈ X .
From now on symmetric space will be denoted by (X , d) whereas a
non-empty arbitrary set will be denoted by Y .
(W3) Given {xn}, x and y in X , limn→∞ d(xn, x) = 0 and limn→∞
d(xn, y) = 0 imply x=y [2].
(W4) Given {xn}, {yn} and x in X , limn→∞ d(xn, x) = 0 and limn→∞
d(xn, yn) = 0 imply d(yn, x) = 0 [2].
(HE) Given {xn}, {yn} and x in X, limn→∞ d(xn, x) = 0 and limn→∞
d(yn, x) = 0 imply d(xn, yn) = 0 [3].
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(1C) A symmetric d is said to be 1− continuous if limn→∞
d(xn, x) = 0 implies limn→∞ d(xn, y) = d(x , y), where {xn} is a
sequence in X and x , y ∈ X [4].
(CC) A symmetric d is said to be continuous if limn→∞ d(xn, x) = 0
and limn→∞ d(yn, y) = 0 imply limn→∞ d(xn, yn) = d(x , y) where {xn}
and {yn} are sequences in X and x , y ∈ X [4].
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Definition

(see [4]) Let (A,S) be a pair of self-mappings defined on a non-empty set
X equipped with a symmetric d.Then the mappings A and S are said to be
(1)commuting if ASx=SAx for all x ∈ X ,
(2)compatible[5]if limn→∞ d(ASxn,SAxn) = 0 for each sequence {xn} in Y
such that limn→∞ Axn=limn→∞ Sxn
(3)non-compatible[1]if there exists a sequence {xn} in X such that
limn→∞ Axn = limn→∞ Sxn but limn→∞ d(ASxn, SAxn) is either non-zero
or non-existent,
(4)weakly compatible[2] if they commute at their coincidence points, that
is,
ASx = SAx whenever Ax = Sx , for some x ∈ X ,
(5)satisfying the property (E.A)[3] if there exists a sequence {xn} in X
such that limn→∞ Axn = limn→∞ Sxn = z , for some z ∈ X .
Any pair of compatible as well as non-compatible self-mappings satisfies
the property (E .A) but a pair of mappings satisfying the property (E .A)
needs not be non-compatible.

() Common Fixed Point Theorems for Single-valued and Multi-valued Maps · · ·24th ,January 2017 27 / 49



Definition

(see [4]). Let Y be an arbitrary set and let X be a nonempty set equipped
with symmetric d . Then the pairs (A,S) and (B,T ) of mappings from Y
into X are said to share the common property (E .A), if there exist two
sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z (11)

for some z ∈ X .
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Definition

(see [3]). Let Y be an arbitrary set and let X be a non-empty set
equipped with symmetric d . Then the pairs (A, S) of mappings from Y
into X is said to have the common limit range property with respect to the
mappings S (denoted by (CLRS) if there exist two sequence {xn} in X
such that

lim
n→∞

Axn = lim
n→∞

Sxn = z (12)

for some z ∈ S(Y ).

() Common Fixed Point Theorems for Single-valued and Multi-valued Maps · · ·24th ,January 2017 29 / 49



Definition

(see [4]). Let Y be an arbitrary set and let X be a non-empty set
equipped with symmetric d . Then the pairs (A, S) and (B,T ) of
mappings from Y into X is said to have the common limit range property
with respect to the mappings S and T , (denoted by (CLRST )) if there
exist two sequences {xn} and {yn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z (13)

for some z ∈ S(Y ) ∩ T (Y ).
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Lemma

Let (X , d)be a symmetric space wherein d satisfies the conditions (CC )
whereas Y is an arbitrary nonempty set with A,B,S and T : Y → X .
Suppose that
(1)the pair (A,S)(or(B,T )) satisfies the (CLRS)(or(CLRT )) property,
(2)A(Y ) ⊂ T (Y ),
(3)T (Y )(orS(Y )) is a closed subset of X ,
(4){Byn} converges for every sequence {yn} in Y whenever {Tyn}
converges (or {Axn} converges for every sequence {xn} in Y whenever
{Sxn} converges),
(5)there exists ϕ ∈ Φ and ψ ∈ Ψ such that for all x , y ∈ Y ,
we have

ψ

(∫ d(Ax ,By)

0
φ(t)dt

)
≤ ψ

(∫ m(x ,y)

0
φ(t)dt

)
− ϕ

(∫ m(x ,y)

0
φ(t)dt

)

where
m(x , y) = maxM5

A,B,S ,T (x , y)
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Lemma

M5
A,B,S ,T (x , y) = [{d2(Sx ,Ty), d2(Sx ,Ax), d(By ,Ty), d(Sx ,Ty),

d(Sx ,By), d(Sx ,Ty), d(By ,Ty), d2(By ,Ty)}]
1
2 ,

and φ : [0,∞)→ [0,∞) is a lebesgue-integrable mapping which is
summable and nonnegative such that∫ ε

0
φ(t)dt > 0,

for all ε > 0.
Then the pairs (A, S) and (B,T ) satisfy the (CLRST ) property.
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Theorem

Let (X , d) be a symmetric space wherein d satisfies the conditions (1C )
and (HE ) whereas Y is an arbitrary nonempty set with
A,B,S ,T : Y → X , which satisfy the inequalities A and B of Lemma 1.
Suppose that the pairs (A, S) and (B,T ) satisfy the (CLRST ) property.
Then (A, S) and (B,T ) have a coincidence point each. Moreover, if
Y = X , then A,B,S and T have a unique common fixed point provided
both the pairs (A, S) and (B,T ) are weakly compatible.

() Common Fixed Point Theorems for Single-valued and Multi-valued Maps · · ·24th ,January 2017 33 / 49



Chapter 5

Some common fixed point theorems for multivalued mappings
under generalized contractive conditions
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Chapter 5: Some common fixed point theorems for multivalued mappings under generalized contractive conditions

This chapter focuses fixed point theorems for multivalued mappings
under generalized contractive conditions which generalize the
results of Seong-Hoon Cho [5].
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Let (X , d) be a metric space.We denote by CB(X ) the class of
nonempty closed and bounded subsets of X and by CL(X) the class
of nonempty closed subsets of X. Let H(·, ·) be the generalized
Hausdorff distance on CL(X); that is, for all A,B ∈ CL(X ),

H(A,B) =

{
max {supa∈A d(a,B), supb∈B d(b,A)} , if the maximum exists,

∞, otherwise;

(14)
where d(a,B) = inf {d(a, b) : b ∈ B} is the distance from point a to
subset B. For A,B ∈ CL(X ), let D(A,B) = supx∈Ainfy∈Bd(x , y)
Then,we have D(A,B) ≤ H(A,B) for all A,B ∈ CL(X ).
From now on, we denote by

M(x , y) = max

{
d(x , y), d(x ,Tx), d(y ,Ty),

d(x ,Tx).d(y ,Ty)

1 + d(x , y)

}
(15)
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for a multivalued map T : X → CL(X ) and x , y ∈ X .
We denote by Ξ the class of all functions ξ : [0,∞)→ [0,∞) such
that
(1)ξ is continuous;
(2)ξ is nondecreasing on [0,∞);
(3)ξ(t) = 0 if and only if t = 0;
(4)ξ is subadditive.
Also,we denote by Ψ the family of all nondecreasing functions
Ψ : [0,∞)→ [0,∞) such that Σ∞n=1 ψ

n(t) <∞ for each t > 0, where
ψn is the nth iterate of ψ.
Note that if ψ ∈ Ψ, then Ψ(0) = 0 and 0 < Ψ(t) < t for all t > 0.
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Let (X , d) be a metric space, and let α : X × X → [0,∞) be a
function.
We consider the following conditions:
(1)for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ N and
limn→∞xn = x , we have

α(xn, x) ≥ 1 ∀n ∈ N (16)

(2)for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ N and
a cluster point x of {xn},we have

limn→∞inf α(xn, x) ≥ 1; (17)

(3)for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ N and
a cluster point x of {xn}, there exists a subsequence {xn(k)} of {xn}
such that

α(xn(k), x) ≥ 1 ∀k ∈ N (18)

() Common Fixed Point Theorems for Single-valued and Multi-valued Maps · · ·24th ,January 2017 38 / 49



Note that if (X , d) is a metric space and ξ ∈ Ξ , then (X , ξ ◦ d) is a
metric space.

Let (X , d) be a metric space, and let T : X → CL(X ) be a
multivalued mapping.Then,we say that
(1) T is called α∗ -admissible [1] if

α(x , y) ≥ 1 implies α∗(Tx ,Ty) ≥ 1, (19)

where α∗(Tx ,Ty) = inf {α(a, b) : a ∈ Tx , b ∈ Ty};
(2)T is called α-admissible [2] if, for each x ∈ X and y ∈ Tx with
α(x , y) ≥ 1, we have α(y , z) ≥ 1 for all z ∈ Ty .
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Theorem

Let (X , d) be a complete metric space, and let α : X × X → [0,∞) be a
function. Suppose that a multivalued mapping T : X → CL(X ) is
α-admissible.
Assume that ,for all x , y ∈ X , α(x , y) ≥ 1 implies

ξ(H(Tx ,Ty)) ≤ ψ(ξ(M(x , y))) + Lξ(d(y ,Tx)) (20)

M(x , y) = max

{
d(x , y), d(x ,Tx), d(y ,Ty),

d(x ,Tx)d(y ,Ty)

1 + d(x , y)

}
where L ≥ 0,ξ ∈ Ξ,and ψ ∈ Ψ is strictly increasing.
Also, suppose that the following are satisfied:
(1)there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(2)either T is continuous or fT is lower semicontinuous.
Then T has a fixed point in X .

.
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Theorem

Let (X , d) be a complete metric space and let α : X × X → [0,∞) be a
function. Suppose that a multivalued mapping T : X → CL(X ) is
α− admissible.
Assume that, for all x , y ∈ X , α(x , y) ≥ 1 implies

ξ(H(Tx ,Ty)) ≤ ψ(ξ(M(x , y))) + Lξ(d(y ,Tx)) (21)

M(x , y) = max

{
d(x , y), d(x ,Tx), d(y ,Ty),

d(x ,Tx)d(y ,Ty)

1 + d(x , y)

}
where L ≥ 0,ξ ∈ Ξ,ψ ∈ Ψ is strictly increasing and upper semicontinuous
function. Also, suppose that the following are satisfied:
(1)there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(2)for a sequence {xn} in X with α(xn, xn+1) ≥ 1foralln ∈ ℵ ∪ {0} and a
cluster point x of {xn},there exists a subsequence {xn(k)} of {xn} such
that,for all , k ∈ N ∪ {0},
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Theorem

α(xn(k), x) ≥ 1. (22)

Then T has a fixed point in X .
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